Regional GDP – Extending Ground Delay Program to Regional Airport Systems

Yu Zhang & Mark Hansen

8th ATM R&D Seminar, NAPA, CA June 29 - July 3 2009

Roadmap

Introduction

- Proposed extension of CDM with Regional GDP
- Decision support for initiating a Regional GDP
- A case study
- Conclusions

Flow Chart of Existing Collaborative Decision Making (CDM)

1. With adjustments based on Metron Aviation, 2004

Rationale

- Marginal benefit of GDP decreases with the increase of severity of demand-capacity imbalance.
- Excess capacity at secondary or regional airports in regional airport systems.
- Observed phenomena of diverting flights and utilizing ground transport.
- In the operational concept for the NextGen, regional system planning and operations are highlighted.
 - --"If there are multiple airports within a system, they need to designed as one system to avoid system imbalances, bottlenecks, and associated congestion and delay. Intermodal transportation links are an important component in making regional airport systems viable." ¹

^{1.} Operational Concept for the Next Generation Air Transportation System (NextGen), page 3-14

Regional GDP

Regional GDP advisory:

- A GDP advisory at the hub airport with demand-capacity imbalance
- Information regarding available slots at other airports in the regional airport system.
- Given the feedback from airlines, slots at other airports would be distributed according to ration-byschedule (RBS) or other mutually agreed algorithms.

Proposed extension of CDM with Regional GDP

Calling a redundant Regional GDP will cause unnecessary cost

- Cost of extending system users to airports and ground transportation providers
- Extra operational management efforts at Airline Operations Centers (AOCs)

Decision Support for Initiating a Regional GDP

Decision

Initiating Regional GDP ? → Is flight diversion and alternative hub cost-effective?

Objective

 Minimize passenger disruption cost, airlines' disruption cost, and regional system cost if a Regional GDP was initiated

Constraints

- Runway length at alternative hub
- Alternative hub excess capacity

Decision Variables

 $x_{i,j} = \begin{cases} 1 \text{ if flight } i \text{ is landed at alternative hub } j \\ 0 \text{ otherwise} \end{cases}$ $y_j = \begin{cases} 1 \text{ if airport } j \text{ is utilized as an alternative hub} \\ 0 \text{ otherwise} \end{cases}$

Objective Function Passenger Passenger Value of Time misconnection Passenger ground Passenger delay transportation time penalty time (VOT) $Min \qquad \left(\sum_{k} \mathbf{w}_{k} \cdot \mathbf{P}_{k} + \sum_{i} \sum_{j} x_{i,j} \cdot BT_{i,j} \cdot Pax_{i} + \sum_{i} \sum_{j} x_{i,j} \cdot TPax_{i} \cdot Mis_{i}\right) \cdot C^{P}$ $+\sum_{k} W_{k} \cdot F_{k} \cdot C^{F} + \sum_{i} \sum_{j} x_{i,j} \cdot C^{D}_{i,j} + \sum_{j} C^{A}_{j} y_{j}$ Alternative hub Flight delay Cost Flight diversion Cost utilization cost

Objective Function

$$\begin{split} & \textit{Min} \qquad \left(\sum_{k} w_{k} \cdot P_{k} + \sum_{i} \sum_{j} x_{i,j} \cdot BT_{i,j} \cdot Pax_{i} + \sum_{i} \sum_{j} x_{i,j} \cdot TPax_{i} \cdot Mis_{i}\right) \cdot C^{P} \\ & + \sum_{k} w_{k} \cdot F_{k} \cdot C^{F} + \sum_{i} \sum_{j} x_{i,j} \cdot C_{i,j}^{D} + \sum_{j} C_{j}^{A} y_{j} \\ & w_{k} = \min\left(\max\left(0, \frac{D_{k}}{c_{I}} - t_{k}\right), \max\left(0, \frac{D_{k} - c_{I}T_{I}}{c_{V}} - (t_{k} - T_{I})\right)\right) \\ & = \max\left(0, \frac{D_{k} - c_{I}T_{I}}{c_{V}} - (t_{k} - T_{I})\right) \\ & t_{k} > T_{I} \\ & D_{k} = \sum_{i \in [i| HSA_{i} < t_{k}]} \left(1 - \sum_{j} x_{i,j}\right) \cdot Pax_{i} \\ & \forall k \in \{1..K\} \\ & F_{k} = \sum_{i \in [i|t_{k-1} \leq HSA_{i} < t_{k}]} \left(1 - \sum_{j} x_{ij}\right) \\ & \forall k \in \{1..K\} \end{split}$$

Delay Continuous Approximation

Test the Performance of Delay Continuous Approximation

Constraints

$$\begin{aligned} x_{ij} &= 0 \quad \forall \Lambda_{ij} = 0 \\ \sum_{j} x_{ij} &\leq 1 \quad \forall i \in \mathbf{I} \\ \sum_{i} x_{ij} &\leq M \cdot y_{j} \quad \forall j \in \Gamma \end{aligned}$$

 $\sum_{i \in \{I \mid n-1 \le HSA_i < n\}} x_{ij} \le ECap_{nj} \quad \forall j \in \Gamma \forall n \in \mathbb{N}$

If runway length at alternative hub is too short for flight *i*, $x_{i,i} = 0$.

Flight *i* can only be diverted to at most one alternative hub.

Flight divert to an airport only when it is used as an alternative hub.

Alternative hub capacity constraint

Case Study (SFO, 06/25/08): Scheduled arrival vs. Actual Arrival

Case Study: Obtaining Arrival Capacity Profile

Case Study: Define flight diversion costs

- Results of the Case Study
 - The optimization of the mathematical programming model <u>suggests 45 flights being diverted to OAK</u>, thus a Regional GDP is suggested.
 - Actual longest delay was about 5 hours. In comparison, the longest flight delay after diverting the 49 flights is half an hour.

Implementation Issues

- Security issues
- Passenger acceptance and communication
- Airport ground facility requirement and funding source

Conclusions

- Regional GDP is a collaborative resource allocation method for regional airport system achieving system efficiency.
- Real-time intermodal transportation need to be designed and operated in making Regional GDP viable.
- Echoes the metroplex airspace management research that promoted by NASA.

Questions? Comments? Thanks.

Yu Zhang, Ph.D. Assistant Professor, Civil and Environmental Engineering University of South Florida (USF) 4202 E. Fowler Ave. ENC 3300 | Tampa, FL 33620 Tel: 813-974-5846 | Fax: 813-974-2957 Email: yuzhang@eng.usf.edu URL: http://cee.eng.usf.edu/