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Abstract:  In this paper we describe ration-by-distance (RBD), a new allocation method to be used in ground 
delay program (GDP) planning.  We show that RBD minimizes total expected delay, under certain assumptions 
related to the manner in which GDP’s are dynamically controlled that.  On the other hand, RBD has poor 
characteristics with respect to the equity of the allocation it produces.  To address this issue, we define a 
constrained version of RBD as a practical alternative to allocation procedures used in operations today, and we 
show that it has superior overall performance.  

1.  Introduction 
One of the primary responsibilities of FAA air 

traffic managers is to formulate and apply strategic 
initiatives to alleviate anticipated demand-capacity 
imbalances at airports.  When such an imbalance is 
expected at an airport, traffic managers apply 
ground delays to flights bound for the troubled 
airport commensurate with the delays they would 
(theoretically) receive in an airborne queue.  This 
prevents air traffic controllers, who have limited 
delay options once aircraft are airborne, from being 
inundated with unmanageable numbers of airborne 
or diverting aircraft.  In effect, anticipated airborne 
delay is transferred back to the ground, where it can 
be managed in a safe and orderly manner.  

The processes for imposing these ground 
delays are embodied in a traffic flow management 
initiative known as a ground delay program (GDP).  
In 2005 [1], there were over 1,350 GDPs 
implemented in the US, which applied delays 
totaling more than 16.8 million minutes, distributed 
over 530,000 flights.  Efficient and equitable 
execution of GDPs is a paramount concern for air 
traffic management.   

A principal concern in planning GDP’s is the 
maximization of throughput into the airport [2].  
However, preserving equity among the competing 
airspace users has also emerged as a second 
performance criterion (see [3], [4]).  Under the 
Collaborative Decision Making (CDM) initiative, 
the ration-by-schedule (RBS) principle has been 
accepted as the standard for equitable allocation.  
However, RBS is not applied in its pure form.  
Select flights are exempted and are not assigned 
any delays.  For instance, flights already in the air 

at the time the GDP is planned clearly cannot be 
assigned ground delay.  Flights outside a certain 
radius from the airport are also exempted [5].  
There are multiple motivations for this 
discretionary exemption policy, but the scientific 
basis most germane to our analysis, is mitigation of 
capacity uncertainty. Flights originating farther 
from the GDP airport must serve their ground delay 
well in advance of their arrival at the airport. The 
amount of ground delay is based on predicted 
capacity reductions, i.e. adverse weather conditions, 
several hours into the future.  Overly pessimistic 
forecasts mean that (in hindsight) some of the 
ground delay is served unnecessarily.  By assigning 
greater proportion of delays to shorter-haul flights, 
ground delay decisions can be reactively adjusted, 
and the overall delays can be reduced, based on 
near-term weather forecasts.  

In this paper, we develop a stochastic model 
of the assignment of ground delays in the presence 
of weather uncertainty and show that a new 
allocation principle, ration-by-distance (RBD), 
maximizes expected throughput into an airport, i.e. 
minimizes total delay, if the ground delay program 
cancels earlier than anticipated. RBD taken to the 
extreme generates inequities, which we will 
demonstrate. To offset this, we propose a 
constrained version of RBD that preserves a 
specified level of equity. We show that for any 
chosen equity level, constrained RBD produces a 
more efficient GDP policy than today’s GDP 
policy, with respect to uncertainty of GDP end 
time. Furthermore, we show that in our algorithm 
we can vary the equity level more uniformly 
compared to the current practice of distance-based 
flight exemptions, and thus propose a more flexible 
approach to plan for a GDP. 
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2.  GDP Planning and Control 
The GDP planning and control process is 

currently supported by the Flight Schedule Monitor 
(FSM) decision support tool [1], [2]. FSM helps 
traffic managers determine and issue the 
appropriate amount of delay for flights involved in 
a GDP. The operational details of the tool and its 
use are too involved to cover in this paper. In this 
section, we provide just enough detail to convey the 
content and benefits of our approach to GDP 
planning and control.   

2.1 GDP Planning 
A GDP plan requires the assignment of 

ground delays to an included set of flights bound 
for a single airport with a predicted capacity-
demand imbalance. The inclusion set is defined as 
those flights scheduled or estimated to arrive during 
the GDP planning horizon. Typically, the planning 
horizon coincides with a weather-induced period of 
reduced arrival capacity and is six hours in duration 
(the average for year 2006).  

Let 1,..., nf f  be the set of included flights. For 

each flight kf , let kd  and ka  be the scheduled 
departure and arrival times, respectively, (For 
flights operating without a published schedule, 
estimated departure and arrival times are used as a 
surrogate.) When the GDP is planned, the FAA 
issues a controlled time of departure time (CTD) 
and a controlled time of arrival (CTA), denoted 

'kd  and 'ka , respectively.  The assigned ground 
delay is given by ' 0k k kg d d= − ≥ . We assume a 
known and deterministic en route travel time, 

k k kL a d= − . Thus, ' 'k k kL a d= − , and the CTA is 
shifted by the amount of the ground delay. That is, 

'k k ka a g= + . 

We model the reduced airport acceptance rate 
(AAR) by creating a set of slots, with 
corresponding slot times 1,..., ns s .  These are 
commensurate with the capacity reduction, e.g. for 
an AAR of 30 aircraft per hour, 30 slots would be 
defined in each hour. Of course, the AAR may vary 
over time.  When stochastic planning models are 
used, the AAR is not known in advance, so a 
planned AAR (PAAR) is defined, based on 
stochastic information and strategy.  Thus, the 
PAAR is quite likely to differ from the realized 
AAR.   

Because each 'ka  is a rigid translation of the 
corresponding 'kd , the GDP plan is completely 
determined once the 'ka  variables have been 
chosen. Once the GDP planning horizon is set (not 
a topic of this paper), the planning problem reduces 

to choosing each 'ka from the slot times. This 
process can be formalized as an assignment model 
by setting the following binary variables, 

  1kjx =  if  kf  is assigned to js ;  0 else 

under the following constraints: 

:
1kj

k s aj k
x

≥
=∑     for k=1,…,n, 

:
1

n
kj

j s aj k
x

≥
≤∑     for j=1,…,n, 

These constraints ensure that each flight 
receives a slot, and that no slot is used more than 
once. From an efficiency standpoint, planners 
would like to formulate a GDP plan that minimizes 
a weighted combination of total expected ground 
delay and total expected airborne delay subject to 
the above constraints. 

Thus, on a basic level, the GDP planning 
problem is a very simple one.  However, when one 
considers explicitly dynamic and stochastic aspects, 
the problem and its analysis becomes considerably 
complex, as we will see in the next subsection. 

2.2 GDP Control Dynamics 
After the initial GDP plan is developed and 

the CTD’s are issued, various stochastic elements 
invoke changes in the PAAR and, therefore, 
positive and negative variations in the CTD’s.  
Several models from the literature, e.g. [6], [7], [8], 
address problems of this type.  While all these 
models can be classified as stochastic, they differ in 
the degree and manner in which they model GDP 
dynamics.  In this paper, we consider a specific 
GDP dynamic and stochastic planning problem, 
namely, the strategy for terminating and exiting a 
GDP.  

The stochastic problem of concern for us is 
that the AAR is generally unknown. In particular, 
the time at which the AAR is restored (full arrival 
capacity) is not known precisely until it happens. 
There are also minor variations in the AAR during 
periods of reduced capacity before full restoration 
but these are usually very minor and are swamped 
by the uncertainty in demand. From a stochastic 
planning perspective, the PAAR should be changed 
to match the AAR. 

The dynamic aspect of concern is that the 
ability to achieve a desired PAAR (i.e. deliver 
aircraft at a targeted rate) is affected by prior 
choices of CTDs and CTAs. That’s because the 
airborne and ground-based ‘inventory’ of flights at 
any given time is determined by the CTDs executed 
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in the past. For instance, suppose that at a time of 
significant capacity increase, all the short-haul 
flights have already departed (under the CTDs 
issued to them). Now if a sudden surge of flights is 
called for, this can come only from the ground-
based inventory. But with only long-haul flights on 
the ground (far away), it will take considerable time 
for the surge to arrive. In turn, this leads to a period 
of airport underutilization realized as excessive 
ground delay.  Of course, flight stage lengths do not 
fall neatly into two categories; we are merely 
highlighting a basic principle of inventory control. 

Conversely, the airport might experience a 
longer duration of reduced capacity, or even a 
sudden drop in capacity; in either case, the GDP 
needs to be extended However, in this paper, we 
acknowledge only capacity increases once the GDP 
is in progress. The validity of this assumption is 
surprisingly well supported by analysis of GDPs 
over the last six years. For sake of brevity, we 
reserve that analysis and a relaxation of the 
capacity increase assumption for a future 
presentation. (Although later in Section 4, we 
discuss the consequences of various slot allocation 
strategies when the program is extended.) Here, the 
reader need only appreciate that the GDP exit 
strategy is a major concern in GDP control.  

Before we present our proposed solution, we 
need to state more precisely what we mean by an 
exit strategy and impose one more assumption. By 
exit strategy, we mean an adjustment of CTDs (and 
therefore CTAs) for flights still on the ground, in 
anticipation of GDP termination. The added 
assumption is that traffic managers follow a GDP 
cancellation policy (CP), meaning that once 
capacity has been restored, all flights currently 
being held by the GDP (past their scheduled 
departure time) are free to depart. CP is in marked 
contrast to a policy in which flights are released 
gradually. Also, CP clearly assumes that the rise in 
capacity is sufficient to accommodate the pent-up 
demand in future time periods. Again, we 
emphasize that the validity of our results do not 
require the capacity rise or CP assumptions, but 
their acceptance greatly facilitates presentation.  

Although the time of cancellation, Tc, is at the 
discretion of the FAA traffic managers, it directly 
depends on changes in weather conditions. 
Therefore, it can be modeled as a random variable.  
We associate a discrete probability distribution with 
the cancellation time Pr[ ]t cp T t= = . In general, 
this distribution depends on weather characteristics.   

For a flight k, we define the random variable 
( , )kD i t as the departure time of flight k with cT t=  

and 'ka i= , and we define ( , )kG i t   as the random 

variable corresponding to the ground delay faced by 
that flight.  Now, it is easy to see that: 

( , ) { , { , }}k k kD i t Min i L Max t d= −  

Further, we have the following equalities: 

( , ) ( , )k k kG i t D i t d= −      
{ , { , }} ( )k k k kMin i L Max t d a L= − − −
{ , { , } }k k k k kMin i L L Max t d L a= − + + −  

{ , { , }}k k kMin i Max t L a a= + −          (1) 

Under the CP assumption, there is no airborne 
delay so the efficiency metric of interest is total 
ground delay.   We define ( )GT t  as the total 
ground delay incurred with cT t= .  Of course, 

( )GT t  depends on the GDP plan so that 
( ) ( ' , )k kk

GT t G a t= ∑ . A GDP plan that 
maximizes expected efficiency would be a set of 
valid ka'  variables that minimizes total expected 
ground delay, GT , which is computed via 

( )tt
GT p GT t= ∑ .  

3.  Ration-by-Distance 
We derive a ration-by-distance (RBD) 

rationing algorithm that yields minimal expected 
delay.  This policy is actually quite close to, but 
improves upon, the approach used in practice. Later 
in the paper, we discuss the degree to which 
practice deviates from this policy and the potential 
implication.  We also discuss and model the very 
important issue of equity and develop a practical 
approach that considers equity. First, we precisely 
define the distance-based RBS allocation algorithm 
(DB-RBS), which is in use today. 

DB-RBS Algorithm 

Step 0. Choose a radius r about the GDP airport. 
For convenience, assume r is in minutes of flying 
time (rather than miles). Mark as exempt all flights 

kf  with estimate en route travel time greater travel 
than r, that is, kL r> . 

Step 1. Assign each airborne and exempt flight, kf , 

to the slot closest to ka . Let F be the list of 
remaining flights and let S be the list of remaining 
slots, sorted by increasing slot time and re-indexed 
by 1,...,j m= . Mark each f F∈  as unassigned.   

Step 2. Process the slots in S as follows. For 
1,...,j m= , find the unassigned flight kf F∈  with 

the least ka  such that k ja s≤ . Assign kf  to slot 
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js . That is, set 'k ja s= . (If no such flight exists, 
leave js  empty.) 

End algorithm. 

The two important features of DB-RBS to 
observe are that flights outside the radius r are 
exempt from delay (Step 1) and that flights inside 
the radius r receive slots according to earliest 
schedule arrival time (Step 2). 

We now define our RBD allocation algorithm. 

RBD Algorithm 

Step 1. Assign airborne flights to slots as in Step 1 
of the DB-RBS algorithm.  

Step 2 :  For remaining slots (ordered by increasing 
slot time) 1,...,j m= , find the unassigned flight, 

kf , with the largest flying time kL  such that 

jk sa ≤ . Assign kf  to slot js . That is, set 

'k ja s= . (If no such flight exists, leave js  empty.) 

End algorithm. 

The important differences between DB-RBS 
and RBD are that under RBD no flights are 
exempted and the priority ruled used in Step 2 
changes from smallest ka  to largest kL . 

  We will now show that RBD has a very 
significant property: it produces a GDP plan that 
minimizes total expected delay.  To prove this, we 
first we show that an elementary slot exchange, 
called a long-short (LS) swap, always improves or 
preserves total ground delay. Given any allocation 
of flights to slots, a LS swap is an exchange of the 
assigned slots between two flights, f1 and f2, such 
that 1 2L L≥ , 1 2' 'a a>  and 1 2 2, 'a a a≤ . In other 
words, in the initial assignment, a longer-haul flight 
(f1) has been assigned to a later slot than the 
shorter-haul flight (f2), and the LS swap reverses 
the assignment.  To prove our main results we need 
the following elementary inequality. 

Lemma:  Let 1 2 1 2, , ,u u v v  be real numbers with 

1 2u u≤  and 1 2v v≤ . Then we have the following 
inequality:  

( ) ( )1 2 2 1min , min ,u v u v+  

( ) ( )1 1 2 2min , min ,u v u v≤ + . 

Proof: Suppose that 1 1u v≤ . By assumption, 

1 2v v≤ , so we have 1 1 2u v v≤ ≤ . This means that  

( ) ( )1 2 1 1min , min ,u v u v≤ . Since 1 2v v≤ , we also 

have that ( ) ( )2 1 2 2min , min ,u v u v≤ . Summing the 

last two inequalities, we obtain the desired result. 
Now we must consider the opposite case, in which 

1 1v u≤ . But this case is symmetric, meaning that 
the same logic can be applied by reversing the roles 
of the u’s and the v’s. ■ 

Proposition: 

If 1 2 ,L L i j≥ < and 1 2,a a i≤ , then  

1 2 1 2( , ) ( , ) ( , ) ( , )G i t G j t G j t G i t+ ≤ + . 

Proof:  From equation (1) we have: 

1 2 1 1( , ) ( , ) min{ , max{ , }}G i t G j t i t L a+ = +    . 

1 2 2 2min{ , max{ , }}a j t L a a− + + −           (2) 

Case 1:  2 2t L a+ ≥ .  In this case equation (2) can 
be rewritten as: 

1 2 1 1( , ) ( , ) min{ , max{ , }}G i t G j t i t L a+ = +            

1 2 2min{ , }a j t L a− + + −             (3) 

Since 1 2L L≥ , 1 2t L t L+ ≥ +  and it follows that 

1 1 2max{ , }t L a t L+ ≥ + .  Thus, equation (3) has the 
following form: 

1 2 2 1 1 2min{ , } min{ , }u v u v a a+ − −  

where 1 2u u≤  and 1 2v v≤ .  If follows from the 
Lemma that 

1 1 2min{ , max{ , }} min{ , }i t L a j t L+ + +

1 1 2min{ , max{ , }} min{ , }j t L a i t L≤ + + +  

which completes the proof for case 1. 

Case 2:  2 2t L a+ < .  In this case, equation (2) can 
be rewritten as: 

1 2 1 1( , ) ( , ) min{ , max{ , }}G i t G j t i t L a+ = +        

1 2 2min{ , }a j a a− + −                  (4) 

By hypothesis, 2a j<  so the last two terms of 
equation (4) sum to zero.  Also by hypothesis, 

ji ≤ , so it easily follows that: 

1 1 1min{ , max{ , }}i t L a a+ −

1 1 1min{ , max{ , }}j t L a a≤ + −  

which completes the proof for  case 2. ■ 

We can now give the basic result concerning 
RBD. 

Theorem:  Let *}'{ ka , the set of CTA’s output by 
RBD, be used to compute ( )GT t  then,  

(i) for any given cancellation time t, ( )GT t  
achieves its minimum value; 
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(ii) for any given cancellation time distribution 
}{ tp ,GT  achieves its minimum value. 

Proof:   We prove (i) by contradiction and, thus 
initially assume it is not true.  If this is the case 
there is an optimal CTA assignment, AS*, different 
from the RBD assignment that has a smaller value 
of ( )GT t .  Proceeding from the earliest to the latest 
slot, consider the associated ordered list of flights in 
AS*.  Consider a similar list for the RBD solution.  
Since the solutions are different, there will be an 
earliest slot where they differ.  Let 2f  be the flight 
that occupies that slot in AS* and let 1f  be the flight 
that occupies it in the RBD solution.  By the basic 
structure of RBD it must be the case that 1 2L L≥ .  
Further, in AS*, 1f  must be assigned to a later slot  
(otherwise, the first slot where the solutions 
differed would have occurred earlier). It follows 
that 1f  and 2f  can be interchanged in the optimal 
solution.  Moreover, this is an LS swap so that by 
the Proposition, it will leave the value ( )GT t the 
same or reduced.  We can continue this process 
until the two solutions are the same.  If at any step 

( )GT t is reduced, we have a contradiction on the 
optimality AS*.  Otherwise, the process ends with a 
proof that the RBD solution has the same value of 

( )GT t  as AS*, also a contradiction, proving part 
(i). 

It can easily be seen that part (ii) follows 
directly from part (i) since the ( )GT t  are the 
variable coefficients in the expression for GT .  ■ 

4.  Equity Considerations and a 
Practical Approach 

There are two general areas of concern that 
should be considered when evaluating the results of 
the previous section and the potential applicability 
of RBD.  First, the Theorem relies on a very 
specific model of GDP dynamics, which is 
certainly not always followed under real conditions.  
Second, the Theorem indicates that RBD optimizes 
a system efficiency metric but says nothing about 
equity, the second important performance criterion.  
We will now argue that the first concern is actually 
somewhat minor and should not blunt in any 
significant way the impact of our Section 3 results.  
The second concern, on the other hand, is of great 
importance and motivated us to create a constrained 
version of RBD, which we feel has practical 
applicability. 

 As stated in Section 2, there can be a wide 
range of AAR adjustments over the course of a 
GDP.  However, from a practical perspective the 
most common are program cancellations and 
program extensions.  A program extension occurs 

when the planned end time is pushed further into 
the future relative to the originally planned end 
time.  Generally speaking, the PAAR remains the 
same as the value specified for the original 
program.  An extension largely involves the 
assignment of CTA’s to flights that originally were 
scheduled to arrive after the planned end time.  In 
fact, since these flights had previously received no 
assigned delays, the ability to assign delays to them 
is totally unaffected by the choice between DB-
RBS and RBD. Additionally, flights that had 
received CTA’s are sometimes assigned additional 
delay.  The choice between DB-RBS and RBD does 
impact which, and how many, of these flights are 
on the ground when a decision to extend is made.  
Generally speaking, under RBD, there are fewer 
flights on the ground in the early stages of a GDP 
while there are more on the ground in the later 
stages of a GDP.  We maintain that the decision to 
extend programs is usually made in the later stages 
of a GDP and thus RBD in fact improves the 
flexibility and the options available in planning an 
extension.      

 Thus, the RBD slot allocation policy has 
been proven to maximize efficiency (expected total 
delay) in the event of program cancellations and it 
also offers advantages under the most typical 
extension scenarios.  We should note one case in 
which it can be detrimental.  This involves the 
situation where the AAR drops to a value below the 
value for which the program was planned.  In fact, 
RBD is counter productive in this case, as one 
would like to have the flexibility to dynamically 
assign delay or additional delay to short haul flights 
on top of the delay already assigned to long haul 
flights. Our analysis of GDP history has shown this 
case to be quite rare, especially relative to the 
number of instances of program cancellations and 
extensions.    

A simple example will illustrate the potential 
shortfalls of RBD from an equity perspective.  
Consider a situation where a flight with one of the 
smallest value of kL has a scheduled arrival time 
early within a 4-hour program.  Such a flight will 
have the lowest priority throughout the allocation 
process and will very likely receive a very long 
delay, e.g. close to four hours.  Such a situation 
would certainly be deemed unacceptable in 
practice. To effectively address equity 
considerations, we define an equity metric and 
associated constraint to maintain equity within the 
RBD process.  We follow the approach of [3], 
which defines the inequity of a given allocation as 
its deviation from an ideal allocation (which also 
must be defined).  In this case, we define the ideal 
as the (pure) RBS allocation.  For each flight kf , 
let "ka  denote the RBS slot assignment.  We 
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define the inequity imposed on kf  as the maximum 
positive deviation between a flight’s assigned slot 
in its RBS slot: 

( ' " )k k kMax a a−  

We now define a constrained version of RBD that 
enforces an upper bound on this inequity metric.  
We call this allocation method equity-based RBD 
(E-RBD) .  This upper bound leads to some very 
significant changes to RBD.  Rather than directly 
creating an allocation, E-RBD first gives each flight 
a temporary slot assignment based on the 
application of RBS.  A set of assignment exchanges 
is executed where each assignment-exchange gives 
a permanent slot assignment to one flight and 
adjusts the temporary assignments of one or more 
others.  The assignment-exchanges are identified by 
choosing flights in order of decreasing value of 
stage length ( kL ) and then executing an operation 
that assigns the chosen flight the earliest feasible 
slot.  Before describing the algorithm it is useful to 
illustrate the assignment/exchange operation.   

The most elementary form of the assignment-
exchange moves the identified flight to an earlier 
slot and then “bumps forward” each of the 
intermediate flights to “make room” for the move.  
Such an operation is illustrated in Figure 1A.  In 
this example, the delay on the targeted flight 4f , is 
reduced by the width of 3 slots and the delay on 
each of the 3 intermediate flights ( 1 2 3, ,f f f ) is 
increased by the width of 1 slot.  This exchange 
would give 4f  a permanent slot assignment and 
adjust the temporary slot assignments of 
( 1 2 3, ,f f f ).   

Figure 1B illustrates a more complex 
assignment-exchange.  In this case, the existing 
assignment of one of the intermediate flights, 2f  , 
is permanent. Therefore, adjustments to the 
temporary assignment of 1f  must take this into 
account.  In this case, the delay of 1f  increases by 
the width of 2 slots.  If js  is the slot to which 1f  is 

reassigned we call this operation an 1f -to- js  

assignment/exchange.  This operation is δ-feasible 
provided that: 

(a) the current flight assignment for js  is 

temporary, i.e. k ja s≤ ; 

(b) none of the delay increases to the 
intermediate flights induces a violation to the 
equity constraint with a right hand side of  δ. 

 
Figure 1:  Examples of Assignment Exchange 

 

We now define the equity version of the RBD 
algorithm. 

E-RBD Algorithm 

Step 0.  Choose an equity deviation limit δ. 

Step 1.  Assign each airborne flight, kf , to the slot 

closest to ka  and remove these flights and slots 
from the respective lists.  Give each remaining 
included flight kf  a temporary slot assignment by 
setting 'ka  to its (unconstrained) RBS slot.  Order 

the remaining m flights by decreasing value of kL . 

Step 2.  For 1,...,k m= : 

find the earliest slot js such that the kf -to- 

js  assignment/exchange is δ-feasible; 

execute this exchange and permanently 
assign the kf  to js . 

End Algorithm. 

It should be noted that in the later executions of 
Step 2, it will typically be the case that the earliest 
slot identified will be the one to which the flight is 
temporarily assigned.  Thus, in such cases, the net 
effect of the Step 2 iteration will be to make the 
existing temporary assignment permanent.  Of 
course, the early executions of Step 2 will 
implement the types of operations illustrated in 
Figure 1. 

f1 f2 f3 f4

f4 f1 f2 f3

Increasing slot time 

Permanent 
slot: 

Temporary 
Slot: 

f1 f2 f3 f4

f4 f2 f1 f3

Figure 1A:

Figure 1B:
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5.  Experimental Results 
We conducted a set of experiments to gain 

insight in the differences between the three 
rationing policies: DB-RBS, RBD and E-RBD.   

5.1  Test Data and Scenarios   
We constructed a test data set based on 

demand data from the ASPM database for San 
Francisco International airport (SFO) on August 11, 
2005.  Our scenario mimics a typical SFO morning 
GDP induced by the late burn off of marine stratus.   
The marine stratus conditions effectively eliminate 
side-by-side landings, thereby reducing the AAR 
from approximately 60 flights per hour to 30 flights 
per hour. Our demand data exceeded 30 flights per 
hour for three consecutive hours, from 9:00 to 
12:00 local time. To accommodate this imbalance, 
we planned a 4-hour GDP from 9:00 to 13:00. The 
control times in the 12:00 hour were necessary to 
accommodate the pent-up demand from earlier 
hours. We evaluated five GDP cancellation times, 
one for the top of each hour during the program 
(9:00, 10:00,…, 13:00). Each of the three 
algorithms – DB-RBS, RBD, and E-RBD -- was 
evaluated under the five cancellation scenarios.  

5.2  Experimental Results 
Figure 2 shows the equity and efficiency 

evaluation of DB-RBS. The horizontal axis 
specifies the exemption distances in nautical miles 
that we tested, with higher values (i.e. smaller 
number of exempt flights) to the left. The vertical 
axis has two scales, the left one being for 
efficiency, measured as total minutes of delay, and 
the right vertical axis being for equity, measured as 
maximum deviation from the RBS allocation over 

all flights. The right axis is for the bars, our 
measure of equity. Note that the equity deviation 
ranges from nearly zero minutes (leftmost bar) to 
just over 160 minutes (rightmost bar).  The 
dramatic increase in deviation (inequity) is to be 
expected, since the total amount of delay is 
absorbed by a shrinking pool of (non-exempt) 
flights. The rate of decline is essentially quadratic 
(for reasons we don’t entirely understand). The 
plateaus correspond to ranges of distance in which 
no new flights bound for the GDP airport are 
encountered.  

The efficiency of DB-RBS is measured by the 
five line plots – one for each cancellation time. 
Note that these are vertically stacked with the latest 
cancellation time being on top. This means that for 
any fixed exemption distance, the delay minutes 
drops each time the program is cancelled earlier. 
This makes intuitive sense, since more flights can 
be released earlier than their controlled times, 
hence reducing the total amount of delay.  

Scanning any of the line plots left to right, we 
see that as the distance parameter decreases 
(thereby exempting longer-haul flights), the total 
delay decreases also, or levels off, in a nearly linear 
manner. This phenomenon confirms the 
fundamental principle of ration-by-distance: delay 
can be saved under early GDP cancellation by 
assigning a greater proportion of delays to the short 
haul flights as compared to long haul flights; the 
earlier the cancellation time, the greater the savings. 
Note also the equity-efficiency tradeoff in Figure 2: 
as equity goes up, efficiency goes down. This is the 
tradeoff associated with the distance parameter. It 
becomes more pronounced for earlier cancellation 
times. 
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Figure 2: Performance Statistics for Distance-based Ration-by-Schedule (DB-RBS) Algorithm 
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Figure 3: Performance of E-RBD 

Figure 3 shows the performance of E-RBD:  
the horizontal axis is the maximum deviation 
parameter, δ, while the vertical axis is the total 
delay, in minutes. We did not ‘plot’ the equity of E-
RBD (as we did in Figure 2) because, by our 
metric, it is directly controlled by parameter δ. The 
five line plots in Figure 3 correspond to the five 
possible GDP cancellation times.  Note that the 
total delay decreases as δ increases. This is because 
higher values of δ allows more long-short swaps to 
take place.  Also, as the program cancellation time 
gets earlier, the total delay decreases.  The line 
plots in Figure 3 are very much like those of Figure 
2, with two important exceptions: in Figure 3, they 
are nearly quadratic, while in Figure 2, they were 
nearly linear. (That’s because the horizontal axis of 
Figure 3 is a quadratic translation of the horizontal 
axis of Figure 2.)  Also, the total delay resulting 
from E-RBD is generally lower than that of DB-
RBS (more on this later).  Figure 3 shows the same 
equity-efficiency tradeoff that we saw in Figure 2.   

We do not have a separate figure to evaluate 
the performance of RBD, because its performance 
is imbedded in Figure 3 as an extrema of E-RBD. 
The total delay resulting from RBD can be found at 
the far right of each cancellation-time line plot.  

It is instructive to further compare the 
performance of RBS, RBD and E-RBD from 
another equity perspective.  In Figure 4, we show 
the sum over all flights, the squared deviation from 
RBS under four different allocation strategies. 
Thus, the units are minutes squared. For E-RBD, 
we chose two representative values of the δ 
parameter:  20 minutes and 80 minutes.  (These are 
values where the marginal decrease in delay 
became small as δ increased further.)  

Figure 4 yields several interesting results.  
First, when the program is not cancelled, RBS has 
perfect equity (zero deviation).  But when the 
program is cancelled early, RBS deviates from 

perfect equity because the RBS allocation is based 
on the planned 4-hour AAR reduction, and not the 
AAR that results from early cancellation of the 
GDP. 
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Figure 4: Equity Measures for RBS, RBD, and 
E-RBD 

Second, as expected, RBD has very poor 
equity when the program is not cancelled; in 
hindsight, short-haul flights have been penalized to 
no end. On the other hand, since RBD saves 
significant delay under early cancellation times, it 
also registers less deviation from the ideal 
allocation. This is because more flights are allowed 
to depart closer to their schedule departure times.  
Third, as δ increases from 20 to 80 min under E-
RBD, equity worsens, if the GDP does not cancel 
earlier. 

Figures 3 and 4 provide an assessment of the 
efficiency and equity tradeoffs under E-RBD. If the 
GDP cancels two hours earlier than planned, E-
RBD with δ=0 (i.e. RBS), δ=20 minutes, and δ=80 
minutes, yields 49%, 25%, and 4% additional total 
delay compared to the RBD allocation. The equity 
gained from the three allocation policies, in lieu of 
the loss in efficiency, are 35%, 30%, and 9% 
respectively, compared to the RBD allocation. 
Clearly, under RBS, the 35% gain in equity, 
compared to RBD, is outweighed by the 49% loss 
in efficiency, if the GDP cancels two hours earlier 
than anticipated. Whereas, setting the parameter δ 
to a value of 80 minutes produces less percentage 
loss in efficiency than the gain in equity metric. In 
case of even earlier cancellation of the ground 
delay program, the RBD algorithm produces the 
most efficient and equitable allocation of slots to 
flights. 

Our most prominent results are shown in 
Figure 5, which directly compares E-RBD to 
today’s policy, DB-RBS, with respect to both 
equity and efficiency, for a 2-hour early 
cancellation time (chosen because it is typical in 
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GDPs). Each point shows the total delay (vertical 
axis) for a given of level of max deviation from 
RBS (horizontal axis). More efficient points sit 
lower on the graph, while more equitable points lie 
farther to the left.  

Note that the E-RBD curve dominates the DB-
RBS curve. Delay savings are in the order of 10%. 
Also note that unlike the E-RBD algorithm in 
which the parameter δ can be varied over a wide 
range of values, the DB-RBS produces only a small 
set of efficient points; this is because airports are 
not evenly distributed over distance. Often times, a 
slight increase or decrease in the exemption 
distance results in inclusion or exclusion, 
respectively, of flights from a set of airports. This 
can cause significant changes in the efficiency (i.e. 
total delay) and equity (i.e.δ) metrics; whereas, in 
the E-RBD algorithm, the efficient frontier varies 
more uniformly. 

We have computed comparable results for the 
other four cancellation times as well (charts omitted 
for sake of brevity). The delay savings generated by 
E-RBD range from 0 to 19%, with the greatest 
savings occurring at the 4-hour cancellation time. 
This demonstrates the basic advantage of E-RBD 
over today’s rationing policy. 

6.  Conclusions 
We have described a new GDP slot rationing 

scheme, RBD, and we have shown that it 
minimizes total expected delay under the most 
typical GDP dynamic scenario.  We have further 
described a second rationing scheme, E-RBD, that 
is practical in the sense that, unlike (pure) RBD, it 

takes into account both equity and efficiency 
factors.  Our computational experiments show that 
not only is E-RBD comparable to the DB-RBS 
algorithm used in practice today, but in fact, it 
provides an efficiency advantage.   

E-RBD has a second important advantage 
over DB-RBS.  DB-RBS is driven by its distance 
parameter.  As this parameter is increased, 
additional airports fall into the scope of the GDP, 
meaning that flights departing those airports must 
share in the total assigned ground delay.  Often 
times, a slight change in the distance parameter can 
affect a large number of flights of one airline an 
entire (e.g. when the airport is a hub for one 
airline).  This sensitivity of the distance parameter 
incites airlines to argue for or against specific 
distance parameters on a daily basis. In contrast, 
our E-RBD policy is driven by a very natural 
parameter (δ = maximum deviation from RBS), 
with a clear performance interpretation: a measure 
of equity.  As such, it can be set based on more 
objective principles or on a value specified by FAA 
policy.   

In addition, as it is changed, the impact on 
delays allocated to flights should be less abrupt 
than the impact of changing the DB-RBS distance 
parameter.  Thus, the use of E-RBS admits a more 
scientific, and less political, basis for GDP 
planning.  While a wider range of experiments and 
scenarios are certainly needed, our proven 
principles and demonstrated results provide a 
strong case for the adoption of E-RBD.   
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Figure 5: Efficient Frontiers for E-RBD and DB-RBS 
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