

1

RATION-BY-DISTANCE WITH EQUITY GUARANTEES: A NEW APPROACH TO GROUND DELAY PROGRAM PLANNING AND CONTROL

Michael O. Ball, University of Maryland Robert Hoffman, Metron Aviation Avijit Mukherjee, UC Santa Cruz

Adverse Weather at an Airport and Ground Delay Program Planning

ISSUES:

- *How to absorb the necessary delay?*
 - Delay before aircraft takes-off?
 - Delay while airborne?
- *How to hedge against uncertainty?*
- Equity

Ground Delay Programs

GDP Planning as Assignment Problem

- $\begin{array}{ll} d(f,s) &= \text{delay of assigning flight f to slot s} \\ &= \text{time}(s) \text{sched_time}(f) \\ \text{If } x(f,s) \text{ is assignment variable then:} \\ \text{Tot delay } &= \sum_{s,f} d(f,s) \ x(f,s) \\ &= \sum_s \text{time}(s) \sum_f \text{sched_time}(f) \end{array}$
- ➔ total delay only depends on the flights involved and the slots used
 - → "usually" all slots are used but in general there is a unique delay-minimizing set of slots
- \rightarrow there are many delay-minimizing solutions

Equity Considerations: Ration by Schedule (RBS)

RBS can be viewed as a *priority-based method* where priority is based on the *published schedule*; it was developed and *accepted by the FAA and airlines* after many "war-gaming" exercises; it has many desirable properties from an equity perspective.

GDPs under Collaborative Decision Making (CDM)

Resource Allocation Process:

- FAA: *initial "fair" slot allocation* [Ration-by-schedule]
- Airlines: *flight-slot assignments/reassignments* [Cancellations and substitutions]
- FAA: periodic reallocation to maximize slot utilization

[Compression]

Viewed from a *deterministic perspective* the overall process achieves three key objectives:

- **Efficiency:** solution used maximizes thruput/minimizes total delay.
- Equity: schedule-based fair-allocation mechanism used; accepted by all parties.
- **CDM:** airlines provided with ability to internally reallocate slots among their own flights.

But

things are not quite so rosy when one considers an uncertain world.

Typical Weather Events ... with uncertainty

NEXTOR

Intuition: assigning delay to short haul flights allows for quicker reaction to changing events

- GDP planners hate to give delay to long-haul (3 ½ to 5 hr) flights
 - must ground delay these flights 4 to 6 hours in advance of their arrival ⇔ much uncertainty regarding weather so far in advance
- Practical approach:
 - assign as little delay as possible to long-haul flights ⇔ if necessary can always assign delay (or extra delay) to close-in/short haul flights.
- Another point of view: if short haul flight is assigned a delay and the weather clears then it can launch and quickly get to the airport to take advantage of released capacity.

A "blind" application of RBS does not take these considerations into account and it can be shown that "pure" RBS does not in general minimize expected delay.

"Traditional" Approach: Tier-Based GDPs (flight exempted based on Tiers): local, 1st tier, 2nd tier, all centers

New Options: Distance Based GDPs (flights outside distance band exempted): "optimize" over distance – two objective functions expected delay and equity

NEXTO

Impact of long-haul priority

Scenario: 2 flights have appx same scheduled arrival time; under GDP one must be delayed

Ration by Distance (RBD)

SFO Experiment: RBS vs RBD -- Total Delay for Various GDP cancellation times

Is RBD Equitable?

Consider:

- 4 hr GDP
- Flight A: short-haul, e.g. 1 hr, early in program
- Flight A would receive lowest priority and be assigned a slot late in the program → delay of 3+ hrs
- This would clearly be considered inequitable

Measuring (and Controlling) Equity

RBS: has been accepted as equity standard

makes sense to measure degree of inequity as deviation from RBS

Inequity for flight: I(f):

Overall inequity = $I^* = Max_f \{I(f)\}$

Equity-Based RBD (E-RBD)

- *Defn:* a_f = sched arrive time for f; L_f = length (time or dist) of f Step 0. Choose an equity deviation limit I*.
- Step 1. Assign each airborne flight, f, to the slot closest to a_f and remove these flights and slots from the respective lists. Assign each remaining included flight *f* a temporary slot equal to its (unconstrained) RBS slot. Order the remaining m flights by decreasing value of L_f .
- *Step* 2. For *f*=1,2,...,*m*:
 - find the earliest slot s_i such that the *f*-to- s_i assignment/exchange is I*-feasible;

 - execute this exchange and permanently assign f to s_i .

E-RBD Illustration

Experimental Setup

Realistic flight schedule at SFO (data available from FAA's ASPM database)

Depicting the "typical" morning fog burn-off case at SFO

- GDP implemented to reduce the demand in the morning hours from 9AM to 1 PM
- During the GDP arrival rate (or capacity) drop down to 30 per hour
- When GDP terminates, which can be either at the planned end time or earlier, the rates go up to 60 arrivals per hour
- Five possible GDP cancellation times: 9AM, 10AM, 11AM, noon, and 1PM (originally planned end time)

Performance of Distance-Based GDP planning (current approach)

Performance of E-RBD

Equity measures for RBS, RBD, and E-RBD

Efficient Frontiers for E-RBD and Distance-Based GDP Planning Algorithms

Summary

- Ration-by-distance (RBD) Algorithm maximizes expected throughput during a GDP (without requiring any explicit probability information).
- RBD "capped" with an inequity parameter (E-RBD) is a simple yet powerful algorithm to assign slots to flights.
- E-RBD functions similar to today's distance-based flight exemption algorithm, but can produce solutions that are both more efficient and equitable.
- Equity can be much more explicitly controlled under E-RBD than under the current distance-based algorithm.