Air and Ground Simulation of Terminal-Area FMS Arrivals with Airborne Spacing and Merging

Todd J. Callantine, Paul U. Lee, Joey Mercer, Thomas Prevôt
San Jose State University/NASA Ames Research Center

Everett Palmer
NASA Ames Research Center

NASA Airspace Systems Program
Advanced Air Transportation Technologies Project
Distributed Air-Ground Traffic Management Element
Introduction

- **Distributed Air Ground Traffic Management (DAG-TM) project research**
 - Conducted at NASA Ames, Glenn, and Langley Research Centers to investigate feasibility and benefits of redistributing practitioner roles and responsibilities for 2015 time frame
 - En route studies: trajectory negotiation using advanced data link and controller tools, delegation of separation responsibility to flight crews
 ◊ Trajectory-based arrival metering with well-integrated controller tools could improve meter fix arrival accuracy and produce more efficient, predictable, and evenly spaced flows into the TRACON

- **Concept Element 11 (CE11): Terminal Arrival: Self-Spacing for Merging and In-trail Separation—NASA Ames Air and Ground Simulation**
 - Airspace Operations Laboratory (AOL) and Flight Deck Display Research Laboratory (FDDRL) DAG-TM simulation infrastructure
 - TRACON FMS routes linked to en route FMS arrivals
 - Traffic scenarios included coordinated flows of aircraft arriving as if metered using DAG-TM en route concepts
 - Envisioned controller strategy: use tools to adjust aircraft toward scheduled time-of-arrival (STA) at their assigned runway, issue spacing or merging clearances to ‘lock in’ sequence and temporal spacing
 - Controllers responsible for safe separation, all clearances by voice
Airspace, Scenarios, and Participants

- NW and SW arrival flows, some NW flow aircraft assigned to 13R (vacated slots filled by SW arrivals to 18R)
- End of flows uncoordinated

- Subjects
 - 4 professional TRACON controllers (15-20 years experience), 9 commercial pilots

- Confederates
 - 4 retired controllers, 6 general aviation pilots

- Two ‘Feeder-Final’ subject controller teams in ‘parallel worlds,’ rotated daily
Experimental Conditions

Flight Deck Decision Support Tools

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air & Ground Tools</td>
<td>75% spacing-equipped aircraft*
Spacing/merging clearances available for equipped aircraft
Controller tools to monitor temporal spacing</td>
<td>Ground Tools
No equipped aircraft
Controller tools to monitor temporal spacing</td>
</tr>
<tr>
<td>Air Tools</td>
<td>75% spacing-equipped aircraft*
Spacing/merging clearances available for equipped aircraft</td>
<td>No Tools
No equipped aircraft</td>
</tr>
<tr>
<td>Ground Tools</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controller Decision Support Tools
- YES
- NO

Notes:
- Two week study in August 2004, two training days, one debriefing day
- First aircraft ‘untouchable’
- Randomized conditions, one pair of 35 minute trials in each condition per day, Feeder and Final swapped positions after the first trial in each condition
- CDTI-equipped piloted simulators and pseudo-aircraft assigned to primary landing runway (18R)—also mixed *spacing guidance*
Enhanced MACS STARS Display

- Spacing Advisory
- Self-Spacing Indicator
- History Circle
- Timeline
- (Route Display)
- (Airspeed Display)
Spacing Accuracy

- Airborne spacing capabilities improved temporal spacing accuracy
- Ground tools alone did not further improve accuracy, but did help controllers err on the conservative side
 - Improved spacing awareness may help minimize go-arounds
- ‘Transfer to tower’ metrics suggest ground tools improve spacing accuracy
- Airborne spacing appears to have helped aircraft maintain required spacing during Tower Ghost ownership
Maneuver Clearances*

- Spacing clearance phraseology caused no confusion
 - “American 123, follow United 345 80 seconds in trail”
 - “United 345, merge behind and follow American 456 80 seconds in trail”

- Airborne spacing results in fewer clearances per aircraft, particularly for the Final controller.

- Spacing clearances tend to supplant speed clearances and associated ‘resume charted speeds’ clearances.

* Preliminary data inferred from MACS pilot logs
Flow Coordination: Spacing Accuracy Effects

- For *uncoordinated* flows:
 - Airborne spacing capabilities improved temporal spacing accuracy
 - Ground tools produced more conservative spacing
 - No Tools yielded broad variation in spacing accuracy
Flow Coordination: Maneuver Clearances

Coordinated Flows

Uncoordinated Flows

- For **coordinated** flows:
 - In spacing conditions, spacing clearances comprised a greater proportion of the clearances issued
 - Feeder and Final issued fewer clearances per aircraft and used smaller proportions of heading vectors and temporary altitudes likely to disrupt FMS operations
 - In conditions *without* airborne spacing, disparity in number of clearances issued by Final and Feeder is greater than for uncoordinated flows
Average WAK Scores

- Scale = 1 (lowest workload) to 7 (highest), Assessment interval = 5 minutes

- Workload remains within acceptable range
Some Post-Questionnaire Results

<table>
<thead>
<tr>
<th></th>
<th>Ground Tools</th>
<th>Air&Ground Tools</th>
<th>No Tools</th>
<th>Air Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Workload rankings do not reflect WAK scores
 - Perceived workload increase from maintaining separation responsibility?
- Safety rankings similar to workload
 - Effect of any unpredictable spacing behavior?
- Controllers preferred more information
 - Similar to workload rankings

* One controller described all conditions as equally safe
Conclusion

- Concept is feasible and improves spacing accuracy
- Controller workload remained within an acceptable range
- Terminal-area airborne spacing works best when linked to en route concepts capable of delivering aircraft in coordinated flows.
- Results present a conservative view of benefits achievable with a mature, fielded version of the concept

Areas for further analyses and research:
- Spacing guidance
- Effects of unequipped aircraft
- Heavier traffic, with reduced or dynamic separation minimums
- En route and tower controller participants
- More realistic Feeder controller positions