Improvement on the Acceptance of a Conflict Resolution System by Air Traffic Controllers

R. Flicker, Technical University Berlin
Outline

1. Background
 1. Multi-Sector-Planning

2. Development of Conflict Resolution Assistance
 1. Hypotheses for conflict resolution
 2. First survey to acquire controllers’ strategies
 3. Model implementation

3. Evaluation of Conflict Resolution Assistance
 1. Description of experimental design
 2. Measurements and results

4. Model Improvement

5. Conclusion and Outlook
Introduction / Multi-Sector-Planning

- New ATM concepts to increase air space capacity
- Airspace temporally and spatially enlarged
- Exceeds cognitive capabilities of air traffic controllers
- Controller needs support by conflict detection and resolution

Multi-Sector Planning:
- Medium-term traffic flow planning
- Optimizes traffic flow beyond existing sector boundaries
- Reduces conflict density
- Relieves sector controller
- Offers conflict solutions
Multi-Sector-Planner

- Working position for one controller (MSP-Controller) with two screens:
 - Air Situation Display
 - Negotiation Window
- 10 min up to 1 hour look ahead time exceeds the mental planning capacity of a controller
- Controller needs support for conflict detection and resolution by an assistance system
Conflict Resolution Assistance

- Low acceptance of conflict resolutions generated by mathematical search methods:
 - Less comprehensible solutions
 - Contradictory to controllers’ experiences

- Include controller knowledge to increase plausibility and acceptance of the system

- Hybrid model (cube model) by Oliver Späth (2003) classifies conflicts and generates solutions with heuristic search methods

- Essential criteria of the hybrid model:
 - Conflict type (conflict classification by Eurocontrol)
 - Distance to destination
 - Aircraft flight performance
 - Vertical distance to sector ceiling
Project Description

Project “Integration of controllers’ strategies into a Medium Term Conflict Resolution System“:

✧ Supported by the German research foundation DFG (Deutsche Forschungsgemeinschaft)
✧ Project duration: January 2003 to December 2005
✧ Project team consists of a psychologist, an engineer and two students
✧ Milestones:
 ✓ Survey for data acquisition
 ✓ Implementation of the acquired controllers’ strategies into a conflict assistance system
 ✓ Evaluation of the assistance system with the Multi-Sector-Planner
 ▪ Evaluation of statistical and machine learning methods to adapt a model to air traffic controllers’ behavior
 ▪ Integration of the new model into the conflict assistance system and evaluation with the Multi-Sector-Planner
Hypotheses For Conflict Solution (1)

▷ First indications from examinations of Späth’s Hybrid/Cube Model and Eurocontrol CORA2

▷ Hypotheses:
 - If destination is far and climb is possible, then a climb is preferred
 - If destination is near, then a descent is preferred
Hypotheses For Conflict Solution (2)

- If climb or descent is impossible, then a lateral solution is preferred

- When an airplane descents (or climbs), it will either continue or suspend the descent (or climb), but it will never fly contrary to the current flight phase

- The conflict type has no influence on the preferred solution
Model Parameter

Model Parameter:

⇒ Input Parameter:
 - Distance to destination airport = \{near, far\}
 - Flight phase = \{climb, cruise, descent\}
 - Conflict type = \{head-on, crossing, catch-up\}
 - Climb solution possible due to aircraft performance and distance to the sector ceiling = \{yes, no\}

⇒ Output Parameter:
 - Solution category = \{climb, descent, stop-climb, stop-descent, lateral\}
First Survey – Realization

⇒ 24 en-route controllers of the German Civil Air Navigation Service Provider (DFS)

<table>
<thead>
<tr>
<th></th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex:</td>
<td>6 female</td>
</tr>
<tr>
<td></td>
<td>18 male</td>
</tr>
<tr>
<td>age:</td>
<td>22 to 51 years</td>
</tr>
<tr>
<td>work experience:</td>
<td>1 to 29 years</td>
</tr>
</tbody>
</table>
First Survey – Results - Resolution (1)

Results: preferred resolution over all criteria

![Bar chart showing preferred resolution over all criteria.](image)

- Vertical: 63.6%
- Lateral: 33.1%
- Speed: 0.5%
- Combination: 2.8%
First Survey – Results - Resolution (2)

Results: preferred resolution depends on conflict type

<table>
<thead>
<tr>
<th>Conflict type</th>
<th>Vertical Solution</th>
<th>Lateral Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catch-up</td>
<td>78.3%</td>
<td>21.7%</td>
</tr>
<tr>
<td>Head-on</td>
<td>56.9%</td>
<td>43.1%</td>
</tr>
<tr>
<td>Crossing</td>
<td>71.9%</td>
<td>28.1%</td>
</tr>
</tbody>
</table>
First Survey – Results - Resolution (3)

Summarizing Results:

<table>
<thead>
<tr>
<th>Flight phase</th>
<th>climb</th>
<th>cruise</th>
<th>descent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to destination</td>
<td>far</td>
<td>far</td>
<td>near</td>
</tr>
<tr>
<td>Climb solution</td>
<td>0%</td>
<td>81.2%</td>
<td>7.1%</td>
</tr>
<tr>
<td>Stop-Climb solution</td>
<td>75.5%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Descent solution</td>
<td>0%</td>
<td>5.8%</td>
<td>69.1%</td>
</tr>
<tr>
<td>Stop-Descent solution</td>
<td>0%</td>
<td>0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Lateral solution</td>
<td>24.5%</td>
<td>13.0%</td>
<td>19.8%</td>
</tr>
</tbody>
</table>
First Survey – Discussion

Results from the first survey:

- Controllers preferred vertical solution
- For aircrafts in cruise ATC instructs to climb when destination is far and to descent when destination is near
- Aircrafts in climb or descent were instructed to interrupt their current flight phase
- The preferred solution depends also on the conflict type (contradictory to the hypotheses)
- Speed solutions are negligible for en-route control
- Combined solutions were given as a service idea, but can be reduced to single solutions
Controllers’ strategies are represented as decision tree:

- **Transition point between cruise and descent (TOD)**
 - **Distance to destination?**
 - **Climb or cruise?**
 - **Climb**
 - **Yes**
 - Head-on conflict?
 - **Yes**
 - Solutions: 1. lateral solution, 2. stop climb
 - **No**
 - Solutions: 1. lateral solution, 2. lateral solution
 - **No**
 - Solutions: 1. lateral solution, 2. lateral solution
 - **Cruise**
 - **Yes**
 - Climb possible?
 - **Yes**
 - Solutions: 1. lateral solution, 2. descend
 - **No**
 - Solutions: 1. lateral solution, 2. stop descent
 - **No**
 - Solutions: 1. lateral solution, 2. lateral solution
 - **Descent**
 - **Transition point between cruise and descent (TOD) is near**
 - **Distance to destination?**
 - **Cruise or descent?**
 - **Cruise**
 - **Yes**
 - Solutions: 1. lateral solution, 2. lateral solution
 - **No**
 - Solutions: 1. lateral solution, 2. lateral solution
 - **Descent**
 - **Yes**
 - Solutions: 1. lateral solution, 2. lateral solution
 - **No**
 - Solutions: 1. lateral solution, 2. lateral solution
Conflict Resolution Assistance – Solution Choice (2)

View of the vertical flight path with controllers’ strategies:

- **Top of Descent (TOD)**
- **Top of Descent far**
- **Top of Descent near**

Decision tree:

1. **Head-on conflict?**
 - **Yes**
 - **Climb not possible**
 - Solutions:
 1. Lateral solution
 2. Stop climb
 - **No**
 - **Climb possible**
 - Solutions:
 1. Lateral solution
 2. Stop climb

2. **Head-on conflict?**
 - **Yes**
 - Solutions:
 1. Lateral solution
 2. Descent
 - **No**
 - Solutions:
 1. Lateral solution
 2. Stop descent
Model Implementation

- Redesign of the existing assistance system “LOTEC” with highly sophisticated object orientated software engineering methods
- COCOS (COnrollers’ strategies integrated into a COnflict resolution System)

COCOS:
- Integration of the acquired controller strategies
- Object orientated analysis and design with the Unified Modeling Language (UML)
- Implemented in the programming language C++
- Network based communication between MSP and the COCOS component
Example For a Conflict Situation
Second Survey – Evaluation

- Evaluation with real-time simulation
- Scenarios based on real traffic data
- Measurement of:
 - subjective workload with questionnaires
 - behavior with system event logging
 - visual attention with an eye-tracking system
- Three comparing conditions:
 - **Baseline condition**: To control the traffic with conflict detection and without conflict resolution
 - **Prior system condition**: To control the traffic with conflict detection and resolution **without** integrated controllers’ strategies
 - **COCOS condition**: To control the traffic with conflict detection and resolution **with** integrated controllers’ strategies
Second Survey – Realization

- 27 en-route controllers of the German Civil Air Navigation Service Provider (DFS)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex:</td>
<td>3 female, 24 male</td>
</tr>
<tr>
<td>age:</td>
<td>23 to 49 years</td>
</tr>
<tr>
<td>work experience:</td>
<td>0 to 24 years</td>
</tr>
</tbody>
</table>
Second Survey – Results (1)

- **Handling Time per Conflict:**

 - LOTEC: 103.95 s
 - COCOS: 78.23 s

- **Unsolved Conflicts (Controller could not find suitable solution):**

 - LOTEC: 14.03%
 - COCOS: 4.35%

- **Workload (NASA Task Load Index (TLX)):**

 - Training: 29.35
 - Baseline Condition: 31.39
 - LOTEC: 33.43
 - COCOS: 28.06
Second Survey – Results (2)

Evaluation showed:
⇒ Integration of air traffic controllers’ knowledge leads to:
 - Shorter handling times
 - Less unsolved conflicts
 - Better retrieval of the preferred solutions
 - Higher subjective plausibility and acceptance

Acceptance of the solution system

- COCOS better (with controller strategies) 56%
- LOTEC better (without controller strategies) 7%
- both systems equal 37%
Model Improvement (1)

Model improvement approach:

- Infer probabilities for the conflict solutions from the input variables by induction from training examples
- Show most probable solutions to the air traffic controller

Objective:

- Set of examples E
 - Discrete input vector x
 - Discrete response variable $y \in \{\text{climb, descent, stop-climb, stop-descent, lateral}\}$
- Infer hypotheses H from the examples E
- Probability P for a value of the response variable y conditioned by the input vector x and hypotheses H is searched: $P(y|x,H)$

- Classification (Pattern Recognition)
Model Improvement (2)

Classification (pattern recognition):

- Learning model consists of:
 - Input vector x drawn from an unknown probability $P(x)$
 - Output vector y corresponding to the input x, according to unknown conditional probability $P(y|x)$
 - Learning machine with a set of functions $f(x, \alpha)$, where α is an element of a set of parameters

- Objective: Choose a function from the function space which response to the output vector in the best possible way
 - Discrepancy or loss between the response y to the input x can be measured by the loss function $L(y, f(x, \alpha))$
 - Find a function which minimizes the risk functional $R(\alpha)$
 \[R(\alpha) = \int L(y, f(x, \alpha)) \, dP(x, y) \]
 - Learning model provides the statistical model $\hat{y} = f(x, \alpha)$, which is an estimate for the model $y = f(x)$
Model Improvement (3)

Problem:

- Air traffic controllers assign different solution types to the same conflict situation
- Using only the most probable solution in a conflict situation results in an lowest achievable error rate of about $\text{Err}=0.194$ (95% confidence interval: $[0.168, 0.220]$)

Solution:

- Using the smallest solution subset with the highest accumulated probabilities, which is greater equal a given threshold (e.g. $\theta=0.8$)
Conclusion And Outlook

- Acceptance of a conflict assistance system could be increased by integrating air traffic controllers’ knowledge.
- Use of more than the four presented parameters will bring only a small increase in agreements between the model and controller’s behavior.
- Presenting the most probable solution results in a residual value, which can be overcome by using a solution set of the most probable solutions.

- Evaluation of learning methods to solve the stated problem with Bayesian Belief Networks or Probabilistic Logic Learning.
Thank you for your attention!

Questions?

Comments?