Design of an airborne spacing director to minimise pilot speed actions

Authors:
Dan Ivanescu, Chris Shaw, Eric Hoffman, Karim Zeghal

CoSpace project
Eurocontrol Experimental Centre, Bretigny, France
Plan of the presentation

- Objective
- Operational concept
 - Airborne spacing ' Remain behind'
- Airborne spacing director
 - Requirements
 - Architecture
 - Design
- Test scenarios
 - 1) Airborne spacing director validation
 - 2) Sequence of 4 aircraft
- Results
- Conclusion
Objective

- To prototype and test a flight deck tool 'airborne spacing director' for assisting pilots establish and maintain a required time delay behind a lead aircraft.
 - Main aim to minimise the number of manual speed adjustments while meeting a given level of spacing performance.
- Building on previous work
 - Automatic CAS control -> Continuous suggested CAS for pilot -> Filtered with 5 knot increment
 - Problem – high frequency of manual speed changes ~1 per minute

© EEC multi-aircraft cockpit simulator
Operational concept

- **Airborne spacing**
 - New task allocation between controllers and flight crew
 - Set of new spacing instructions where the flight crew can be tasked by the controller to maintain a given spacing (in time or in distance) with respect to a designated aircraft

- **Sequencing applications in terminal areas**
 - Remain/heading then remain behind
 - Merge/heading then merge behind

- **Remain behind**
 - Maintain spacing through speed adjustments
Airborne spacing director: requirements

<table>
<thead>
<tr>
<th>Requirement type</th>
<th>Performance parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Spacing error</td>
<td>Attain and maintain: spacing error within mean ≤ 2.5 s and standard deviation < 1.25 s</td>
</tr>
<tr>
<td>Stability</td>
<td>Trail demanded CAS variation</td>
<td>Trail CAS overshoot due to a step demand should be no greater than 5 knots.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design constraint type</th>
<th>Constraint parameter</th>
<th>Design constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human factors</td>
<td>Time between consecutive CAS actions</td>
<td>Mean interval between speed actions > 3 minutes ± 30 s standard deviation</td>
</tr>
<tr>
<td>Human factors</td>
<td>Trail demanded CAS variation</td>
<td>CAS changes restricted to multiples of 5 knots</td>
</tr>
</tbody>
</table>
Airborne spacing director: architecture

- ADS-B
 - Lead state (position, Groundspeed)

- Ownship state

- ATC
 - Merge/Remain Instructions

- Automatic Spacing Guidance

- CAS Filter

- Lead history Based Prediction

- Round To Nearest 5 knots

- Merge/Maintain Automatic

- Suggested Desired CAS

Automatic

Desired CAS
A change is detected
Start to estimate the magnitude
Consecutive Discrete CAS values (Search interval)
A steady evolution is detected
Stop to estimate the magnitude
Estimated duration
Estimated magnitude of change

Lead filtered and estimated CAS

Airborne spacing director: design
Modelling environment: aircraft and wind

- **Aircraft model:**
 - All aircraft are Airbus 320
 - Point mass with bank angle, thrust, lift and drag models validated by NLR
 - Pilot reaction: constant 5 s time delay

- **Wind model**
 - Joint Aviation Requirements-All Weather Operations autoland certification process (JAR-AWO 07/03-13, 1996)
 - Turbulence: gaussian distribution based on a Dryden spectrum
 - Disturbances of airspeed and angle-of-attack
Test scenario (1): airborne spacing director validation

Scenario:
- Two aircraft in descent from 25,000 to 5,000 feet
- No initial spacing error
- Required spacing: 90 seconds
- Light turbulent crosswind

Experimental parameters:
- Constant search interval of lead CAS history was varied between [10, 20, 30, 45 and 90] seconds
- Lead CAS profile: five lead descent profiles recorded from real-time simulations
Test scenario(2): sequence of 4 aircraft

- Experimental parameter:
 - manual mode was executed with lead aircraft history based prediction and without

(All speeds in CAS, search interval fixed at 30s)
Results(1): airborne spacing director validation

Mean spacing error as function of pilot activity for various search intervals (10, 20, 30, 45 and 90 s)

Shortest time between three consecutive speed actions as function of search intervals
Results(2): sequence of 4 aircraft

Demanded CAS – without lead history based prediction

Demanded CAS – with lead history based prediction
Results: sequence of 4 aircraft

Along track spacing errors without lead history based prediction

Along track spacing errors with lead history based prediction
Conclusion

- **Airborne spacing director**
 - Identified initial set of performance requirements and design constraints for 'merge behind' and 'remain behind'
 - Prototyped and tuned lead history based prediction algorithm for manual 'remain behind' to increase average interval between speed adjustments from ~1 minute to >3 minutes
 - Tested on sequence of four aircraft in manual 'remain behind'

- **Future work**
 - Extend the tool to 'merge behind' manual mode
 - Compare performance of manual and automatic modes
 - Test robustness for strong winds and turbulence
 - Refinement of requirements through real-time simulation